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Colored-noise-induced discontinuous transitions in symbiotic ecosystems
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A symbiotic ecosystem is studied by means of the Lotka-\olterra stochastic model, using the generalized
Verhulst self-regulation. The effect of fluctuating environment on the carrying capacity of a population is taken
into account as dichotomous noise. The study is a follow-up of our investigation of symbiotic ecosystems
subjected to three-levétrichotomous$ noise[R. Mankin, A. Ainsaar, A. Haljas, and E. Reiter, Phys. Rev. E
65, 051108(2002]. Relying on the mean-field theory, an exact self-consistency equation for stationary states
is derived. In some cases the mean field exhibits hysteresis as a function of noise parameters. It is established
that random interactions with the environment can cause discontinuous transitions. The dependence of the
critical coupling strengths on the noise parameters is found and illustrated by phase diagrams. Predictions from
the mean-field theory are compared with the results of numerical simulations. Our results provide a possible
scenario for catastrophic shifts of population sizes observed in nature.
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[. INTRODUCTION state to an unstable one. Note that symbiotic Lotka-\Volterra
) ] . ] models with the true Verhulgtogistic) self-regulation have
One of the key issues in ecology is how environmentalsome special properties, such as transitions from stability to

fluctuations and species interactions determine variability innstability, even in the absence of noi§&,19,29. When
population densitie$l,2]. Ecologists have mainly been in- there are no transitions from stability to instability, as is true
terested in the dynamical consequences of population intefor most natural ecosystems, the features of the system can
actions, often ignoring environmental variability altogether.be different. A more fundamental question is, both from the-
However, the essential role of environmental fluctuations hasretical and practical viewpoints, whether colored fluctua-
recently been recognized in theoretical ecology. Notably, théions of the carrying capacities can also induce bistability of
noise-induced effects on population dynamics have been thguich systems and produce abrupt changes between the cor-
subject of intense theoretical investigatiqs4]. Moreover, ~ responding stable states.
ecological investigations suggest that population dynamics is In this paper we consider a broad class Mfspecies
sensitive to noise colof5]. Noise, via its interaction with ~Lotka-Volterra models of symbiotic ecological systems with
nonlinearity of the system, has given rise to new counterinihe generalized Verhulst self-regulation mechanism. The ef-
tuitive phenomena: stochastic resonaf noise-enhanced fect of fluctuating environment on the growth of a population
stability [7], resonant activatiof], noise-induced nonequi- S modeled as colored fluctuations of the carrying capacity.

librium transitions[9—11], noise-induced multistability, and Sier;ﬁgp(;ntﬁeo:cng]set fﬁrr‘%ziﬁ]t:rzgli%r?:%gtiigeg’vgl;a";g :ggts:i)gedrgﬁ-
nonequilibrium phase transitiorf$2, 13, etc. sity [1] (Ei“ilxi/N, wherex; is the population density of the

It is recognized that gradual secular changes in environs, speciey we consider average species density as the state

mert1tal pzilérlainetgrs rr?aytleatd toh(_j|stcont|_r:_uoushchangles 'S eigérameter of the ecosystem. Although both logistic and gen-
systemg14,13. Such catastrophic transitions have also beery, ;64 verhulst mechanisms for self-regulation are useful

noted in various theoretical models, assuming that the dete[r—1 modeling actual ecological systems, the latter is more
ministic  counterpart of the model is multistable flexible, including the case of logistic self-regulation, and in

.[1'14’16_1$‘ The. dominant model exp'?"”'”g_ such chgngessome cases it may fit the population data better than a logis-
includes alternative attractors and their basins. Inspired b

the fact that ext | iplicati ; i i Yic law [1]. We study the model using a mean-field approach,
€ fact that external multiplicative noise can induce mu "focusing on exact stationary solutions of the self-consistency
stability as well as first-order phase transitions in some com

equation and on colored-noise-induced nonequilibrium tran-
plex s_ystems(see Ref.[13)), the authors .Of Ref[19]_ haye sitions. For the sake of mathematical simplicity, it is useful to
investigated whether the catastrophic shifts occurring in ec

Yook for types of colored noise such that enable, in the case

systems could be regarded sometimes as induced by mulfly e mean-field theory at least, the stationary probability
pllcat|_ve_ colored noise. The_answer IS again positive, as in Yensity to be evaluated exactly for any value of the correla-
symbioiic ecosystem, dgscnbgd .by lrspecies generallzed tion time. The simplest noise of this kind is the dichotomous
Lotka-Volterra model with logistic self-regulation, colored Markovian noise, also known as the random telegraph signal
fluctuations of the carrying capacities of populations hav 9]. Thus motivat,ed in this work the fluctuations of the car-

been shown to produce discontinuous changes from a stab §ing capacity are' modeled as dichotomous Markovian

noise.
We mainly consider the generalized Verhulst self-
*Electronic address: ain@tpu.ee regulation with an exponenB8>1 [cf. also Eg.(2)]. We
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would like to emphasize that our previous models with lo-scribes the development of thign species without any inter-
gistic self-regulation(8=1) [19] are qualitatively different action with other species. Typical mechanisms for self-
from the present one witg>1. For the sake of clarity we regulation in ecosystems are, for example, a territorial
note the followingi(i) In the case of3=1 considered in Ref. breeding requirement and the crowding effect caused by
[19], a coupling-induced transition from stability to instabil- competition for resourcefl]. These are taken into account

ity occurs even if the system is deterministice., in the by applying the generalized Verhulst model
absence of noigeln the present model witg>1, however,

the corresponding deterministic system is always x \B
monostable, i.e., there are no transitions from stability to fix)=g| 1 < | 2
instability. (i) The deterministic counterpart of the modified !
m0d9.| W'Fh'gzl in Ref.[19] is also monostaple._But, n this with =0, whereK; is the saturation point of population
modification the phenomenon of monostability is realized bydensity(the carrying capacityand 3, is the growth rate pa-

means of introducing an artificial competing interaction. In . . PN
the present model such a modification is absent; the relationr_-alm eterN)oifS ;Eg Iit:tefef;%?(i)[rll.ouﬂl]ii 9 rrrl]a;?r)i(x (‘#) J(; é)
ship between species is but symbiofiii) In comparison ~ '’ . SR ping | LooTuE

with Ref. [19], here the effect of fluctuating environment on &19dJji = 0. theith species is in a symbiotic relationship with

the carrying capacity of a population is modeled in a morethe]th species, i.e., the presence of other species increases

natural way — by the inclusion of an additive noise term fortgezgrowth rate dOf eﬁCh spem{i?.].bOn the bIaS|ts of I?hefts-th
the carrying capacity. In Ref19] the immediately fluctuat- [h, 9 vtve.ct(_)nS| era tSpeC'ffh 0 be equiva ent, SO Ia €
ing quantity is the reciprocal of the carrying capacity. characteristic parameters of the ecosyst@mmetapopula-

The purpose of this article is twofold: First, to provide tion) are independent of the species, 5 9,Ki=K>0,J;

) o ) =J/N>0.
exact analytical results for colored-noise-induced first-order Random interaction with the environmefdiimate, dis-

like phase transitions in the model of symbiotic ecosystems ses. eftis taken into account by introducing a colored
over extended dichotomous noise parameters and interactiGifoc>: gl ' u Y ucing

strengths. Second, the testing of models based on the geng\glse. infi(X). Erom now on we shall use fluctuations of the
alized Verhulst self-regulation raises the important issue of&/YINg capacitk;
how different self-regulation mechanisms can influence the
behavior of stochastic complex systems. We show that di-

chotomous fluctuations can induce bistability of the €COSYSy here the colored noisa(t) is assumed to be a dichotomous

tem (with respect to the average species defsind that Markovian stochastic proce$8]. A dichotomous process is

related discontinuous transitions can be controlled by noisg random stationary Markovian process consisting of jumps
parameters. We also establish the exact conditions und%r

which abrupt transitions occur, and analyze the role of the et\A{een two vgluez:—l,l. The JUmps follow in time ac-
parameters of the generalized,VerhuIst mechanisms in suc oro_llng toa P0|ss_o_n process, while th_e_ values oceur with the
transitions ationary probability 1/2. The transition probabilities be-
' . . tween the state&(t)=+1 can be obtained as follows:

The structure of the paper is as follows. Section Il pre-
sents the basic model investigated in this work. In Sec. Il a
mean-field description of the model is given and the corre-
sponding exact self-consistency equation is found. Sectio
IV analyzes the behavior of the self-consistently determine
stationary mean field. In the phase space of the system pa- _ My — /
rameter;y a coexistence regri)on of F'zwo stationa?; statfle (Z®)=0, (ZO,Z(t)) =& exp-vt=t). (5
phases, a low density phase and a high density phase §fcan e seen that the switching ratés the reciprocal of the

populations, and first-order-like phase transitions are estalygise correlation time v=1/7.. Moreover, the following
lished. The dependence of the critical noise parameters angentities are true:

the critical coupling parameter on the other system param-

eters is investigated. In the case of a finite number of inter- Z)*=1, Zt)*1=z1), (k=1,2,..). (6
acting speciesN=500 the mean-field results are compared

with results of computer simulations. Section V containsObviously, model(1) with Egs. (2) and (3) is biologically
brief concluding remarks. meaningful only if

Ki=K[1 +apZ(t)], 3

P1t+7F1,0)=31-€"), >0, »>0. (4

he mean values df;(t) and the correlation function are

1. MODEL ap<1. 7)

It is practicable, by applying the properti€d) of the di-
chotomous process, to convert the td{ﬁ? in Eq. (2) to the
form

As in our previous worK19], the present model is based
on theN-species generalized Lotka-Volterra equation

d

GO = X0 o4O + 2 (0 |, (1)
" Ki# =KL +az(), (8)

whereX; (t) (i=1,... N) is the population density of thi¢h

species at time [clearly X(t)=0]. The functionf;(X) de- in which we have introduced
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1 1 1
=———T[(1+ay)f+(1-ayf, 9 _- =
Y 2(1_3(2))5[( ap)” + (1 -ap)”] ©) > 5
U=v 1 1
and the amplitude of the dichotomous fluctuations > "%
_(1+a)f-(1-ay)f (10  Many significant inequalities follow from Eq13) to char-
(L+ag)P+(1-ay)? acterize the stationary states of the system. First, as for a

S . _ stationary cases; =[r/ y(1-a)]# andx,=[r/y(1+a)]*# are
By substituting identity8) into Eq.(2) and applying a scal-  stable fixed points of the deterministic equatiqd8) with
ing of the form Z(t)=-1 andZ(t)=1, respectively, and all trajectorie§t)

satisfy the following inequalities:
r ]1/13 { r ]1/13
> X(t) > . (15)
Y1-a) Y1+a)

-~ X - ~ _
X =2 =&, J=—, =2, (11)
K )
Second, as the mean val(® must also satisfy the inequali-
ties (15), it follows that if <1 and if

we get a dimensionless formulation of the dynamics

dx® ~ P pupe
O %) 11+ OO + SS X0 1.

dt NiZi 3> ;= i(l —pusL

(12) 1-2

-~ _ ) ) ) . then no stationary state with a positive finite mean value can
whereZ () is a dichotomous noise with an amplitude 1 andexist. It is remarkable that in the cage-1 such a restriction
a switching ratév. Note that an analogous system of equa-of the coupling intensity) disappears.
tions with a trichotomous noise in the particular caseBof The deterministic behavior of E¢L3) with =1 neglect-
=1 is investigated in Ref.19)]. _ _ ing noiseZ(t) is investigated in Ref[20]. WhenJ< v, the

We emphasize that Eqgl2) are mathematically equiva- deterministic potential associated with E(L3) with Z
lent to the initial systeni1)~(3) and have been derived with- =0, 8=1 causes the species to approach the equilibrium state
out any approximation. For brevity, in what follows we shall (X)=1/(y-J), while when interaction between the species is

omit the tilde throughout this paper. greater than the saturation effe> ), an instability oc-
curs. That means that at a finite tigethe mean valugXx)
Ill. MEAN-FIELD APPROXIMATION grows to infinity and the system becomes unstable. This tran-

sition time t, depends on the parameters of the dynamical
system and on the initial distribution of the populations.

The behavior of a stationary system can be analytically
studied by means of a standard mean-field theory procedure

To proceed further with the analytical examination of
model (1) with the generalized Verhulst self-regulation
mechanism with arbitrary3, we follow the mean-field ap-

proximation scheme described in the caseBefl in Ref. [11]. For a stationary state we can solve Etg), taking as

[19]. We assume thall — . This means that we are inter- e 1o ndary condition that there is no probability current at
ested in the case of infinitely many interacting species. Folye 1oyndary15). This way we get the stationary probability
lowing Shiino[21], one can reach the mean-field approxima-yjgtribytion in thex space,P(x,r)=S,P(x), wherePS(x) is
tIOI’]. b_y replacing the s_|te averagd/N)Z.X(t) by the. the stationary probability density for the stdtea,). After
statistical averagéX(t)) in Eq. (12). Hence, each stochastic quite simple calculations one can find

differential equation(12) can be reduced to an independent

and identical stochastic differential equation of the form P(cr) = Brx~ 1) - r2 (Z ~ i)z (2rp)-1
aX(0) " yaB(1/2,v/2r B) yai\r xP ’
at - XO{L+ X)) - yXPH[1+azi)]}. (13 (16)
_ _ o where r=1+J(X),B(\,x) =I'MNI'(«k)/T'(\+k) is the beta
The corresponding composite master equation is function, andrl is the gamma function. The probability den-
P (x1) sity P(x,r) is normalized to restrick within the interval
J X, t J
TR0 - L () -1 + 2 TPy, [ : ]ﬂﬂ [ r Tm
= < = —
2" A1+a) S RYER

+ 2 UnnPr(x.1), (14) , _
m Note that in the particular case g1 the formula(16) for

the stationary probability distribution coincides with the sta-
with r(t)=1+JX(1)),Pn(x,t) denoting the probability den- tionary probability distribution considered in R¢fL9] with
sity for the combined proces,a,,t);n,m=1,2;-ay=a, g=1/2(see also Ref22]). The self-consistency equation for
=a; and the Weiss mean-field approach, whose solution yields the
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dependence ofX) on the system parameters, is

(X) = fX1xP(x,r)dx. (17)

For the sake of simplicity, we shall introduce the “order pa-
rameter”

A G S S (18)
T 2yB\XP[ T 2B(1+XX)
Defining the parameterg and «x as
2yB\YE v 2yB\"P1
QZ(LB) v :<L5> L 19
v 28] v J

we get a dimensionless formulation of the self-consistenC)Z

equation(17). The corresponding equation is

11

11 1 1 )
23’2ﬁ+2’m+2’a>_g(m)’

(20)

Q- km= ml‘(1’3)2F1<

where,F, is the hypergeometric function.
With the help of the stationary probability distribution

PHYSICAL REVIEW E 69, 061106(2004)

B=13

g(m)

FIG. 1. Solutions of the self-consistency equatigf) at differ-
ent parametersd. The amplitude parametes®=0.995 and the
straight line is determined hg=2,x=0.8. The mean-field solutions
are given by the intersection points of different curves with a
straight line. Two typical cases are shown: there is just one stable
olution (full circles on curvesp=1.8 andB=3), or two stable
olutions and one unstable solutiG@mpty circle on curvg83=2).

ol )

The dependence @b () on 8 is represented in Fig. 2. It is
remarkable that the critical parametag, increases mono-
tonically from zero toa2()~0.9248 if the parameteg

dg(m)
dn?

dg(m)
dm

=0.
8p=ac

(22)

(16), one can easily calculate the moments of populatione (1,%) increases. Fop-1<1 we can make do with the

densities

1 1
m+=:a2|. 21
2 2 ) (2Y)

IV. RESULTS

As the deterministic behavior of systems wjgh<1 and
B> 1 differs, we will restrict ourselves in this section to such
systems in which the conditiog>1 holds. It is just with
B>1 that new, biologically important effects can be ex-
pected in comparison with the model wigh=1 presented in
Ref. [19].

approximate equatioagcz4(,8—l).

Figure 3 shows different solutions of the self-consistency
equation(20) for the mean fieldn as a function on the cou-
pling constant) and the noise correlation time at the am-
plitude parametem?=0.980. The existence of alternative
stable stateéFig. 3, the curver,=0.5) indicates that there is
a coexistence regiod; <J<J,, where two stable phases are
possible. Notably, coexistence does not mean that the two
phases are present simultaneously; however, either is pos-
sible depending on the initial distribution. The situation de-
scribed represents a typical case of first-order phase transi-
tions. If the value of the “order parameteri (describing the
stationary stable state of the systemJatJ, close to the
point J,) is on the upper branch, a slight growth of the cou-

It seems convenient to introduce graphical representationgling parameter may bring it beyond the bifurcation paint

of Eq. (20) to have a better understanding of the occurrenceind induce a discontinuous transition to the other stable state
of this or that solution. Figure 1 shows a typical example ofof the system with the value afi on the lower branch.

such representations. All self-consistently determined values
of mare given by the intersection points of the two curves in

Fig. 1 presenting the right-hand and left-hand sides of Eq. o8
(20). We can see that there are two possible situatigns. 06
There is just one solution of Eq20) if the function g(m)

increases monotonically from zero to infinity msincreases. Ng“ 04
(i) In the case of nonmonotonic dependenceg@h) on m

there occur either one or three solutions of E2). In the 02
case of fixed values g8 there is a lower limit for the noise

amplitude ag.(B), below which ag=<ay;, g(m) increases
monotonically. Ifag>ay, then for increasing values o,
the functiong(m) starts from zero, growing to a local maxi-
mum; next it decreases, attaining a local minimum, and then FIG. 2. The critical noise amplitude paramesg vs the system
grows to infinity asm—o. The critical noise amplitude parameterB. In the case of large values @ the critical noise
ay(B) is given by the system of transcendental equations amplitude saturates up to the valag ~0.9248.
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03 04 05 06 07 08 09 1

a?

FIG. 3. Stationary mean fieloh vs coupling strength at differ- FIG. 5. The critical correlation time; vs the noise amplituda,
ent correlation times,. The system parametg@=2 and the noise for some values of the system paramegethe filled dots on theg
amplitudeay=0.99. In the case of,=0.5 the system shows hyster- axis correspond to values of the critical noise amplitude
esis. Solid and dashed lines are stable and unstable solutions of thg.(3):a5.(1.1)=0.2828 a3(1.5 =0.6208 a5,(2)=0.7148, and
self-consistency equatia@0), respectively. If the value of the mean a5.(3)=0.7686. At the poinay=1 the critical correlation time ap-
field lies on the upper branch close to the pdinwith J=J, a  proaches infinity.
slight growth ofJ induces a catastrophic transition of the system to
another §tab|e state with the value of the mean field correspondingoimsm1 andm, correspond to the points in which the func-
to the point G. tion g(m) achieves the local maximum and local minimum,
respectively. The poinin, corresponds to the minimum of
Figure 4 shows a phase diagram in ther; plane ataj  the functiong’(m). From Eq.(23) a monotonic dependence
=0.980 andp=2. The shaded region in the figure corre- of 3(7) on 7, follows: if 7, increases from 0 ta7,, thenJ;
sponds to the coexistence region of two phases. As the COfecreases frome to J'(ay, B). Notably, the coexistence re-
relation time 7. increases, the multiphase region narrowsgion exists only if the coupling parametdris sufficiently
down and disappears at the value of the correlation 4Me |arge: 3> J*. The critical correlation time’.= 7,(m) and the
=0.655. Hence, there is an upper lim(@y, 3) for the cor-  qjtica) coupling parametef =J,(my) can be evaluated from
relation time 7, at greater values of which the system is Eq. (23) by numerical methods or by using approximate

monostable. equations.
The curve of the boundary of the coexistence region, "aq - ~1/23 noise-induced transitions different from
Ji(7e), is given by a parametric formula as those considered can be observed on the phase diagram in

1 gm |7 the J- 7, plane. These transitions are reflected in changes in
(M) = 28 m+m the shape of the probability distributiaii6): if J<Js(7o),
then the probability density(x,r) exhibits a bell-shaped

1 1 m \]-ve (23 form; for J>J;(7,) the two-value structure of noise is still
Ji(m) = ,—{—< g,—)} ., i=1,2, immediately reflected in the form d#(x,r), i.e., P(x,r) ex-
l9"(m)[Ly g’ (m)| hibits a U-shaped form. The critical cund(r,) is deter-

where the prime denotes a differentiation with respect tgnined by
m,me (m;,my,) for i=1, and me (m,,mg) for i=2. The

-1
J3(7e) = (1 - E) (1 - %) (1- ZﬁTc)(zﬁTc)(llﬂ)_l-

60 B
50 (24)
40 "‘-.. The curvels(7,) in Fig. 4 demonstrates that, in the model
~ 30 4 ; considered, the phenomenon of noise-induced bistability
” VNG does not depend on the shape of the stationary probability
distribution P(x,r), as in the coexistence region of the two
10 7 phasesP(x,r) can exhibit either bell-shaped or U-shaped
5% ; forms. Discontinuous transitions can also occur between sta-
01 02 03 04 05 067’ tionary states with probability densities of qualitatively iden-

Te tical forms.

In Fig. 5 we have plotted the critical correlation tim*gaas
A function of the parametea% arld B. In the case of fixed
values off the critical parameter, increases monotonically

FIG. 4. A plot of the phase diagram in thle-7. plane ataé
=0.980,8=2. The shaded region in the figure corresponds to th
coexistence region of two phases. The critical correlation t"r@ﬂe e . ; -
=0.655. The borders of the coexistence reglgir,) andJ,(,) are from zero to infinity |_f '_[h_e noise ampllt_udab increases fr_om
computed from Eq(23). The dotted lineJ; corresponding to Eq.  8oc(8) to 1. In the vicinity of the maximal noise amplitude
(24) separates the domains of the phase space, where the shapesioF},1>a€> 1-exg—-\), with a constant>1; the value
the probability densityP(x,r) are qualitatively different. of 7, can be estimated by the following equation:

061106-5



MANKIN et al. PHYSICAL REVIEW E 69, 061106(2004)

1 to+T N

. _ X:ﬁ . ngxj(t)dt. (27)

The averaging tim& was chosen to be sufficiently longer
2 than the correlation time; for exampl€~1 near the coex-

\ istence region. The time evolution of the average value is
carefully monitored until the stationary state is reached

(to>5). The squares in Fig. 6 shoMobtained by numerical
02 022 024 026 028 03 calculations as we gradually change the correlation time
T during integration of Eqs(12), i.e., the solutionX; for the
previous valuer, = 7.1~ A7 is taken as the initial condition
FIG. 6. Plot of the mean value of the population dengiyas  for the next pointr,, and 7 is varied monotonically in two
a function of the noise correlation time at aj=0.9398=2, and  cases: as, increases and as decreases. It can be seen that
J=6. The solid and dashed lines correspond to the stable and ufhe numerical data satisfactorily coincide with the analytical
stable solutions of Eq(20), respectively. _Hysteresis of the mean staple solutions fotX). Notably, the coexistence region ex-
value(X) appears. The squares are obtained by means of Compulglis 5156 in the case of a finite number of interacting species.
simulations of the syster.2) with N=500. As can be expected, the bistable region shrinks as the num-
ber N of species decreases. As was mentioned before, hys-
. 1 1\72 1+a, teresis appears also at a change of the noise amplitude. In
7e(B.2o) = 2 1+4/1 _E In EO ' (25 these cases jumps to lesser numbers of individuals occur at
larger amplitudes than the opposite jumps.
Note that for=1 the critical correlation time can be exactly ~ Perhaps the most important new result, in an ecological
expressed by elementary functiofe$. Ref. [19]) context, is the existence of the critical noise amplitude
a9:(B). The value ofay.(B) is the lowest value of the noise
+ag amplitude for the phenomenon of hysteresis to occur, i.e.,
discontinuous transitions are possibledf>aq.(8). It should
X be pointed out that the threshold amplitualg(B) depends
At the critical noise amplitudegy,=ag., we can see that,  only on the exponenB describing the generalized Verhulst
approaches zero aé~(a2—a§), where aﬁ: =:’:12|;,,o=(—,1OC [see self-regulation(see Fig. 2 This circumstance may, in prin-
Eqg. (10)]. As the noise amplitudey,> a,. increases, the criti- ciple, provide vital information to maintain ecosystem stabil-
cal coupling parametel” decreases monotonically from in- ity in a technogeneous environment. Yet, this conjecture re-
finity to the value mains to be verified by further studies. Let us note that in the
W2W)-1] P g case ofB=1 discontinuous transitions fror_n a stable state to
(1P = (1 : 1) [( 1) N 1} an u_nsf[able one, \_Nhere the mean popglan(_)n size grows with
' B out limit (a biologically meaningless situatiproccur, how-
1 1\12 ever, at small noise amplitudésee also Ref{19]).
Xexp[l -4 (1 __> } (26)  Finally, the modified model witt=1 in Ref.[19], exhib-
B iting noise-induced hysteresis, is able to display discontinu-
o N ) ous transitions similar to those represented in Figs. 3 and 6.
at a=1. In the vicinity of the critical ampllt*udeag But, in this modification the phenomenon of hysteresis is
“aZOmao>30c_y the parameter) decreases as) ~(a realized by the inclusion of an artificial competing interac-
_ac)(llﬁ)_l. It is remarkable that in the case of fixed values Oftion in the form of a dependence of the Carrying Capamty
B there is a lower limit for the coupling paramet®f1,8),  on the average number of individuals of all populations.
below which,J<J(1,p), the system is monostable at all Note that the present model is qualitatively different, for
values of the noise parameters. such a competing interaction is absent but the mean popula-
Hysteresis can also occur in the case of either noise paion density nevertheless exhibits hysteresis as a function of
rameter,7, or ay, being chosen as the control parameter. Fomoise parameters and the symbiotic coupling strength for all
example, in Fig. 6 hysteresis is exposed for the mean valuealues of3>1.
of the population densitie) if the noise correlation time,
is considered as the control parameter. It can be seen that a
jump from a state with a bigger number of individuals to that V. CONCLUDING REMARKS
with a lesser one occurs at smaller correlation times than the |, the present work, we extended our previdlispecies

opposite jumps. , _ _ Lotka-Volterra stochastic model of a symbiotic ecological
The mean-field solutioiX) is also compared with com-  gystem with a simple logistic self-regulation mechan|4j
puter simulation of the syste(d2) with the finite number of o g version with the generalized Verhulst self-regulafieee
interacting species\'=500, using the numerical methods de- Eq. (2), with B> 1]. We would like to emphasize that our
scribed in Refs[10,11. The mean value of the population previous mode[19], where an interaction-strength-induced
densitiesX is computed by transition from stability to instability takes place, even if the

~
~.
~—

* 1
(120 = %ln(l -
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system is deterministi¢i.e., in the absence of noiseis (¢=1), can be anything from 1 te. Notably, variations of
qualitatively different from the present model. In the latterthe trichotomous noise flatness can also induce discontinuous
the corresponding deterministic system is alwaystransitions. We can also modify the model wig™>1 by
monostable, i.e., there are no transitions from stability tancluding a term that mimics a competing interaction de-
instability. scribed in Ref[19]. Though the concrete formulas are dif-
The presence of colored fluctuations of the carrying caferent, the general picture of the colored-noise-induced hys-
pacities of populations has a profound effect on an ecosyderesis is the same as that encountered in Sec. IV.
tem described by Eqg9)~(12) with 8> 1, rearranging its Our major result is that, for symbiotic ecological systems
parameter space so that in a certain region colored noise cAf’ Metapopulations with ‘the generalized Verhulst self-

induce bistability of the ecosystem. Moreover, hysteresis fofegulation(8>1), colored fluctuations of the environment
the mean field and related discontinuous transitions caf@n cause bistability and also abrupt transitions of mean
appulaﬂon densities. Therefore, an increase of noise ampli-

as of the coupling constant. As the coupling-induced twolude or a decrease of noise correlation time can, under cer-

. : P . tain conditions, cause a catastrophic fall in the size of the
ph?‘se _c:le|stence region does not exist in thg system WIthOlRopulations. Moreover, as in E¢L1) the growth rates and
noise, it is a colored-noise effect. The results indicate that th

effect of noise is not merely restricted to the shift of the € determlnlstlc c.arrymg capamfy of speC|es-have bNeen
mean population density, but the whole nature of the dynamabsorbed into the time scale and into the coupling stredigth

ics changes. Notably, the coexistence region exists only %:Pafyo 'chreacl);'g'Ba(gnsfgigfi}]ugﬁ delsg?rt\rt]lgou;;ﬁnsmons
bounded values of the noise correlation time< 7, [see Eq. yag 9 P A

(25) and Fig. 4. Let us note that there are lower limits for andJ,

. . We emphasize that fop>1 abrupt changes of mean
the coupling parameted>J (1,5) [see Eq.(26)], and for population densities appear only if the noise amplitude is

the noise amplitudeay>aq; [see Eq(22)], at lower values  greater than the threshold valag,(g). As the critical noise
of which the hysteresis of the mean field disappears. Thigmp|itydea,, increases relatively rapidly i increasegsee
interesting circumstance demonstrates that both agents — thgq 2) ‘it seems reasonable to assume that in symbiotic eco-
symbiotic coupling of species and the colored fluctuations okystems with the generalized Verhulst self-regulation abrupt
the carrying capacities — act in unison to generate disconyansitions appear with a greater probability if the exporgnt
tinuous transitions of the mean population density. is lower. It remains to be seen whether such a trend has a
The following characteristic regions can be discerned foimeaning for problems in natural sciences.
the exponeng in the formula(2), describing the generalized The mean-field results considered correspond to an infi-
Verhulst self-regulation(i) For <1 and as the coupling nite number of globally coupled species. Bearing in mind the
strengthJ exceeds some critical value, dichotomous noiseresults of computer simulations presented in Fig. 6, one can
induced discontinuous transitions from a stable stationargssume that this scenario is not much different from more
phase of the system to an unstable phase can appear. In tfealistic ecosystems, where the number of species is finite, at
unstable phase an explosive increase of populations occuiigast in the case when the number of species is great enough.
Of course, the growth of any expanding population must It is worth emphasizing that the deterministic counterpart
eventually be limited by shortage of resources. Thus, in ecoef most ecological models exhibiting noise-induced discon-
logical contexts unstable states of a system can be interpreteitiuous transitions is able to display transitions similar to
variously: extinction of populations, presence of additionalthose induced by noise for a certain range of the values of the
interaction between species that the model has not taken infgarameterg14,16,17. In our model, however, these transi-
account, etc(for 8=1 see also Ref19)]). (i) In casef>1 tions occur only when colored noise is present.
there is no unstable state of the system, and the deterministic We believe that the obtained results are of interest also in
counterpart of the system is monostable. However, environether fields where symbiotic interaction and generalized Ver-
mental fluctuations can induce bistability of the ecosystemhulst self-regulation are relevant by modeling the system,
and the system presents abryfitst-order-likg transitions e.g., in the dynamics of human world populati¢a3],
between the low and high density phases of populations. Theoupled chemical reactions, some laser syst¢fjs and
phenomenon is robust enough to survive a modification obusinesg24].
the noise as well as the coupling mechanism. Calculations
analogous to those given in Secs. Il and IV show that in the ACKNOWLEDGMENTS
case of a trichotomous noig&9,22 most of the results of This work was partly supported by the Estonian Science
Sec. IV are qualitatively valid. It is remarkable that for a Foundation Grant No. 5943 and the International Atomic En-
trichotomous noisé, the flatness parameter =(Z*)/(Z??  ergy Grant No. 12062, for which the authors extend their
contrary to the case of the symmetric dichotomous noisgratitude.
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