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A symbiotic ecosystem is studied by means of the Lotka-Volterra stochastic model, using the generalized
Verhulst self-regulation. The effect of fluctuating environment on the carrying capacity of a population is taken
into account as dichotomous noise. The study is a follow-up of our investigation of symbiotic ecosystems
subjected to three-level(trichotomous) noise[R. Mankin, A. Ainsaar, A. Haljas, and E. Reiter, Phys. Rev. E
65, 051108(2002)]. Relying on the mean-field theory, an exact self-consistency equation for stationary states
is derived. In some cases the mean field exhibits hysteresis as a function of noise parameters. It is established
that random interactions with the environment can cause discontinuous transitions. The dependence of the
critical coupling strengths on the noise parameters is found and illustrated by phase diagrams. Predictions from
the mean-field theory are compared with the results of numerical simulations. Our results provide a possible
scenario for catastrophic shifts of population sizes observed in nature.
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I. INTRODUCTION

One of the key issues in ecology is how environmental
fluctuations and species interactions determine variability in
population densities[1,2]. Ecologists have mainly been in-
terested in the dynamical consequences of population inter-
actions, often ignoring environmental variability altogether.
However, the essential role of environmental fluctuations has
recently been recognized in theoretical ecology. Notably, the
noise-induced effects on population dynamics have been the
subject of intense theoretical investigations[3,4]. Moreover,
ecological investigations suggest that population dynamics is
sensitive to noise color[5]. Noise, via its interaction with
nonlinearity of the system, has given rise to new counterin-
tuitive phenomena: stochastic resonance[6], noise-enhanced
stability [7], resonant activation[8], noise-induced nonequi-
librium transitions[9–11], noise-induced multistability, and
nonequilibrium phase transitions[12,13], etc.

It is recognized that gradual secular changes in environ-
mental parameters may lead to discontinuous changes in eco-
systems[14,15]. Such catastrophic transitions have also been
noted in various theoretical models, assuming that the deter-
ministic counterpart of the model is multistable
[1,14,16–18]. The dominant model explaining such changes
includes alternative attractors and their basins. Inspired by
the fact that external multiplicative noise can induce multi-
stability as well as first-order phase transitions in some com-
plex systems(see Ref.[13]), the authors of Ref.[19] have
investigated whether the catastrophic shifts occurring in eco-
systems could be regarded sometimes as induced by multi-
plicative colored noise. The answer is again positive, as in a
symbiotic ecosystem, described by anN-species generalized
Lotka-Volterra model with logistic self-regulation, colored
fluctuations of the carrying capacities of populations have
been shown to produce discontinuous changes from a stable

state to an unstable one. Note that symbiotic Lotka-Volterra
models with the true Verhulst(logistic) self-regulation have
some special properties, such as transitions from stability to
instability, even in the absence of noise[3,19,20]. When
there are no transitions from stability to instability, as is true
for most natural ecosystems, the features of the system can
be different. A more fundamental question is, both from the-
oretical and practical viewpoints, whether colored fluctua-
tions of the carrying capacities can also induce bistability of
such systems and produce abrupt changes between the cor-
responding stable states.

In this paper we consider a broad class ofN-species
Lotka-Volterra models of symbiotic ecological systems with
the generalized Verhulst self-regulation mechanism. The ef-
fect of fluctuating environment on the growth of a population
is modeled as colored fluctuations of the carrying capacity.
Since one of the characteristic quantities of an ecosystem,
perhaps the most fundamental one, is its average species den-
sity [1] (oi=1

N xi /N, wherexi is the population density of the
ith species), we consider average species density as the state
parameter of the ecosystem. Although both logistic and gen-
eralized Verhulst mechanisms for self-regulation are useful
in modeling actual ecological systems, the latter is more
flexible, including the case of logistic self-regulation, and in
some cases it may fit the population data better than a logis-
tic law [1]. We study the model using a mean-field approach,
focusing on exact stationary solutions of the self-consistency
equation and on colored-noise-induced nonequilibrium tran-
sitions. For the sake of mathematical simplicity, it is useful to
look for types of colored noise such that enable, in the case
of the mean-field theory at least, the stationary probability
density to be evaluated exactly for any value of the correla-
tion time. The simplest noise of this kind is the dichotomous
Markovian noise, also known as the random telegraph signal
[9]. Thus motivated, in this work the fluctuations of the car-
rying capacity are modeled as dichotomous Markovian
noise.

We mainly consider the generalized Verhulst self-
regulation with an exponentb.1 [cf. also Eq. (2)]. We*Electronic address: ain@tpu.ee
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would like to emphasize that our previous models with lo-
gistic self-regulationsb=1d [19] are qualitatively different
from the present one withb.1. For the sake of clarity we
note the following:(i) In the case ofb=1 considered in Ref.
[19], a coupling-induced transition from stability to instabil-
ity occurs even if the system is deterministic(i.e., in the
absence of noise). In the present model withb.1, however,
the corresponding deterministic system is always
monostable, i.e., there are no transitions from stability to
instability. (ii ) The deterministic counterpart of the modified
model withb=1 in Ref.[19] is also monostable. But, in this
modification the phenomenon of monostability is realized by
means of introducing an artificial competing interaction. In
the present model such a modification is absent; the relation-
ship between species is but symbiotic.(iii ) In comparison
with Ref. [19], here the effect of fluctuating environment on
the carrying capacity of a population is modeled in a more
natural way — by the inclusion of an additive noise term for
the carrying capacity. In Ref.[19] the immediately fluctuat-
ing quantity is the reciprocal of the carrying capacity.

The purpose of this article is twofold: First, to provide
exact analytical results for colored-noise-induced first-order-
like phase transitions in the model of symbiotic ecosystems
over extended dichotomous noise parameters and interaction
strengths. Second, the testing of models based on the gener-
alized Verhulst self-regulation raises the important issue of
how different self-regulation mechanisms can influence the
behavior of stochastic complex systems. We show that di-
chotomous fluctuations can induce bistability of the ecosys-
tem (with respect to the average species density), and that
related discontinuous transitions can be controlled by noise
parameters. We also establish the exact conditions under
which abrupt transitions occur, and analyze the role of the
parameters of the generalized Verhulst mechanisms in such
transitions.

The structure of the paper is as follows. Section II pre-
sents the basic model investigated in this work. In Sec. III a
mean-field description of the model is given and the corre-
sponding exact self-consistency equation is found. Section
IV analyzes the behavior of the self-consistently determined
stationary mean field. In the phase space of the system pa-
rameters a coexistence region of two stationary stable
phases, a low density phase and a high density phase of
populations, and first-order-like phase transitions are estab-
lished. The dependence of the critical noise parameters and
the critical coupling parameter on the other system param-
eters is investigated. In the case of a finite number of inter-
acting speciessN=500d the mean-field results are compared
with results of computer simulations. Section V contains
brief concluding remarks.

II. MODEL

As in our previous work[19], the present model is based
on theN-species generalized Lotka-Volterra equation

d

dt
Xistd = XistdF f i„Xistd… + o

jÞi

JijXjstdG , s1d

whereXi std si =1, . . . ,Nd is the population density of theith
species at timet [clearly Xistdù0]. The function f isXd de-

scribes the development of theith species without any inter-
action with other species. Typical mechanisms for self-
regulation in ecosystems are, for example, a territorial
breeding requirement and the crowding effect caused by
competition for resources[1]. These are taken into account
by applying the generalized Verhulst model

f isxd = diF1 −S x

Ki
DbG , s2d

with bù0, whereKi is the saturation point of population
density(the carrying capacity) anddi is the growth rate pa-
rameter of the ith species [1]. The matrix sJijd si , j
=1, . . . ,Nd is the interaction(or coupling) matrix. If Jij .0
andJji .0, theith species is in a symbiotic relationship with
the j th species, i.e., the presence of other species increases
the growth rate of each species[3]. On the basis of Refs.
[3,20] we consider all species to be equivalent, so that the
characteristic parameters of the ecosystem(or metapopula-
tion) are independent of the species, i.e,di =d ,Ki =K.0,Jij
=J/N.0.

Random interaction with the environment(climate, dis-
eases, etc.) is taken into account by introducing a colored
noise in f isXd. From now on we shall use fluctuations of the
carrying capacityKi

Ki = Kf1 + a0Zistdg, s3d

where the colored noiseZistd is assumed to be a dichotomous
Markovian stochastic process[9]. A dichotomous process is
a random stationary Markovian process consisting of jumps
between two valuesz=−1,1. The jumps follow in time ac-
cording to a Poisson process, while the values occur with the
stationary probability 1/2. The transition probabilities be-
tween the statesZstd= ±1 can be obtained as follows:

Ps±1,t + tu71u,td = 1
2s1 − e−ntd, t . 0, n . 0. s4d

The mean values ofZistd and the correlation function are

kZistdl = 0, kZistd,Zjst8dl = di j exps− nut − t8ud. s5d

It can be seen that the switching raten is the reciprocal of the
noise correlation time,n=1/tc. Moreover, the following
identities are true:

sZistdd2k = 1, sZistdd2k−1 = Zistd, sk = 1,2, . . .d. s6d

Obviously, model(1) with Eqs. (2) and (3) is biologically
meaningful only if

a0 , 1. s7d

It is practicable, by applying the properties(6) of the di-
chotomous process, to convert the termKi

−b in Eq. (2) to the
form

Ki
−b = K−bgs1 + aZistdd, s8d

in which we have introduced
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g =
1

2s1 − a0
2db

fs1 + a0db + s1 − a0dbg, s9d

and the amplitude of the dichotomous fluctuations

a =
s1 + a0db − s1 − a0db

s1 + a0db + s1 − a0db . s10d

By substituting identity(8) into Eq. (2) and applying a scal-
ing of the form

X̃i =
Xi

K
, t̃ = dt, J̃ =

KJ

d
, ñ =

n

d
, s11d

we get a dimensionless formulation of the dynamics

dX̃ist̃d
dt̃

= X̃ist̃dH1 − gf1 + aZ̃ist̃dgX̃i
bst̃d +

J̃

N
o
jÞi

X̃jst̃dJ ,

s12d

whereZ̃ist̃d is a dichotomous noise with an amplitude 1 and
a switching rateñ. Note that an analogous system of equa-
tions with a trichotomous noise in the particular case ofb
=1 is investigated in Ref.[19].

We emphasize that Eqs.(12) are mathematically equiva-
lent to the initial system(1)–(3) and have been derived with-
out any approximation. For brevity, in what follows we shall
omit the tilde throughout this paper.

III. MEAN-FIELD APPROXIMATION

To proceed further with the analytical examination of
model (1) with the generalized Verhulst self-regulation
mechanism with arbitraryb, we follow the mean-field ap-
proximation scheme described in the case ofb=1 in Ref.
[19]. We assume thatN→`. This means that we are inter-
ested in the case of infinitely many interacting species. Fol-
lowing Shiino[21], one can reach the mean-field approxima-
tion by replacing the site averages1/Ndo jsÞidXjstd by the
statistical averagekXstdl in Eq. (12). Hence, each stochastic
differential equation(12) can be reduced to an independent
and identical stochastic differential equation of the form

dXstd
dt

= Xstdh1 + JkXstdl − gXbstdf1 + aZstdgj. s13d

The corresponding composite master equation is

] Pnsx,td
] t

= −
]

] x
hxfrstd − xbgs1 + andgPnsx,tdj

+ o
m

UnmPmsx,td, s14d

with rstd;1+JkXstdl ,Pnsx,td denoting the probability den-
sity for the combined processsx,an,td ;n,m=1,2;−a1=a2

=a; and

U = n1−
1

2

1

2

1

2
−

1

2
2 .

Many significant inequalities follow from Eq.(13) to char-
acterize the stationary states of the system. First, as for a
stationary case,x1=fr /gs1−adg1/b andx2=fr /gs1+adg1/b are
stable fixed points of the deterministic equations(13) with
Zstd=−1 andZstd=1, respectively, and all trajectoriesXstd
satisfy the following inequalities:

F r

gs1 − adG1/b

. Xstd . F r

gs1 + adG1/b

. s15d

Second, as the mean valuekXl must also satisfy the inequali-
ties (15), it follows that if bø1 and if

J . J1 =
b

1 − a0
s1 − bds1/bd−1,

then no stationary state with a positive finite mean value can
exist. It is remarkable that in the caseb.1 such a restriction
of the coupling intensityJ disappears.

The deterministic behavior of Eq.(13) with b=1 neglect-
ing noiseZstd is investigated in Ref.[20]. WhenJ,g, the
deterministic potential associated with Eq.(13) with Z
=0,b=1 causes the species to approach the equilibrium state
kXl=1/sg−Jd, while when interaction between the species is
greater than the saturation effectsJ.gd, an instability oc-
curs. That means that at a finite timetc the mean valuekXl
grows to infinity and the system becomes unstable. This tran-
sition time tc depends on the parameters of the dynamical
system and on the initial distribution of the populations.

The behavior of a stationary system can be analytically
studied by means of a standard mean-field theory procedure
[11]. For a stationary state we can solve Eq.(14), taking as
the boundary condition that there is no probability current at
the boundary(15). This way we get the stationary probability
distribution in thex space,Psx,rd=onPn

ssxd, wherePn
ssxd is

the stationary probability density for the statesx,and. After
quite simple calculations one can find

Psx,rd =
brx−s1+bd

gaBs1/2,n/2rbd
U1 −

r2

g2a2Sg

r
−

1

xbD2Usn/2rbd−1

,

s16d

where r =1+JkXl ,Bsl ,kd;GsldGskd /Gsl+kd is the beta
function, andG is the gamma function. The probability den-
sity Psx,rd is normalized to restrictx within the interval

x2 ; F r

gs1 + adG1/b

, x , x1 ; F r

gs1 − adG1/b

.

Note that in the particular case ofb=1 the formula(16) for
the stationary probability distribution coincides with the sta-
tionary probability distribution considered in Ref.[19] with
q=1/2 (see also Ref.[22]). The self-consistency equation for
the Weiss mean-field approach, whose solution yields the
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dependence ofkXl on the system parameters, is

kXl =E
x2

x1

xPsx,rddx. s17d

For the sake of simplicity, we shall introduce the “order pa-
rameter”

m: =
n

2gb
K 1

XbL =
n

2bs1 + JkXld
. s18d

Defining the parameters% andk as

% = S2gb

n
D1/b n

2bJ
, k = S2gb

n
D1/b1

J
, s19d

we get a dimensionless formulation of the self-consistency
equation(17). The corresponding equation is

% − km= m1−s1/bd
2F1S 1

2b
,

1

2b
+

1

2
;m+

1

2
;a2D = gsmd,

s20d

where2F1 is the hypergeometric function.
With the help of the stationary probability distribution

(16), one can easily calculate the moments of population
densities

kXkl = S r

g
Dk/b

2F1S k

2b
,

k

2b
+

1

2
;m+

1

2
;a2D . s21d

IV. RESULTS

As the deterministic behavior of systems withbø1 and
b.1 differs, we will restrict ourselves in this section to such
systems in which the conditionb.1 holds. It is just with
b.1 that new, biologically important effects can be ex-
pected in comparison with the model withb=1 presented in
Ref. [19].

It seems convenient to introduce graphical representations
of Eq. (20) to have a better understanding of the occurrence
of this or that solution. Figure 1 shows a typical example of
such representations. All self-consistently determined values
of m are given by the intersection points of the two curves in
Fig. 1 presenting the right-hand and left-hand sides of Eq.
(20). We can see that there are two possible situations.(i)
There is just one solution of Eq.(20) if the function gsmd
increases monotonically from zero to infinity asm increases.
(ii ) In the case of nonmonotonic dependence ofgsmd on m
there occur either one or three solutions of Eq.(20). In the
case of fixed values ofb there is a lower limit for the noise
amplitude a0csbd, below which a0øa0c, gsmd increases
monotonically. If a0.a0c, then for increasing values ofm,
the functiongsmd starts from zero, growing to a local maxi-
mum; next it decreases, attaining a local minimum, and then
grows to infinity asm→`. The critical noise amplitude
a0csbd is given by the system of transcendental equations

USdgsmd
dm

DU
a0=a0c

= 0, USd2gsmd
dm2 DU

a0=a0c

= 0. s22d

The dependence ofa0c
2 sbd on b is represented in Fig. 2. It is

remarkable that the critical parametera0c
2 increases mono-

tonically from zero toa0c
2 s`d<0.9248 if the parameterb

P s1,`d increases. Forb−1!1 we can make do with the
approximate equationa0c

2 <4sb−1d.
Figure 3 shows different solutions of the self-consistency

equation(20) for the mean fieldm as a function on the cou-
pling constantJ and the noise correlation timetc at the am-
plitude parametera0

2=0.980. The existence of alternative
stable states(Fig. 3, the curvetc=0.5) indicates that there is
a coexistence region,J1,J,J2, where two stable phases are
possible. Notably, coexistence does not mean that the two
phases are present simultaneously; however, either is pos-
sible depending on the initial distribution. The situation de-
scribed represents a typical case of first-order phase transi-
tions. If the value of the “order parameter”m (describing the
stationary stable state of the system atJ,J2 close to the
point J2) is on the upper branch, a slight growth of the cou-
pling parameter may bring it beyond the bifurcation pointJ2
and induce a discontinuous transition to the other stable state
of the system with the value ofm on the lower branch.

FIG. 1. Solutions of the self-consistency equation(20) at differ-
ent parametersb. The amplitude parametera2=0.995 and the
straight line is determined by%=2,k=0.8. The mean-field solutions
are given by the intersection points of different curves with a
straight line. Two typical cases are shown: there is just one stable
solution (full circles on curvesb=1.8 andb=3), or two stable
solutions and one unstable solution(empty circle on curveb=2).

FIG. 2. The critical noise amplitude parametera0c
2 vs the system

parameterb. In the case of large values ofb the critical noise
amplitude saturates up to the valuea0c

2 <0.9248.
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Figure 4 shows a phase diagram in theJ−tc plane ata0
2

=0.980 andb=2. The shaded region in the figure corre-
sponds to the coexistence region of two phases. As the cor-
relation time tc increases, the multiphase region narrows
down and disappears at the value of the correlation timetc

*

=0.655. Hence, there is an upper limittc
*sa0,bd for the cor-

relation time tc at greater values of which the system is
monostable.

The curve of the boundary of the coexistence region,
Jistcd, is given by a parametric formula as

tcsmd =
1

2b
Fm+

gsmd
ug8smduG−1

,

s23d

Jismd =
1

ug8smduF 1

g
Sm+

gsmd
ug8smduDG−1/b

, i = 1,2,

where the prime denotes a differentiation with respect to
m,mP sm1,m2d for i =1, and mP sm2,m3d for i =2. The

pointsm1 andm3 correspond to the points in which the func-
tion gsmd achieves the local maximum and local minimum,
respectively. The pointm2 corresponds to the minimum of
the functiong8smd. From Eq.(23) a monotonic dependence
of Jistcd on tc follows: if tc increases from 0 totc

* , thenJi

decreases from̀ to J*sa0,bd. Notably, the coexistence re-
gion exists only if the coupling parameterJ is sufficiently
large:J.J* . The critical correlation timetc

* =tcsm2d and the
critical coupling parameterJ* =Jism2d can be evaluated from
Eq. (23) by numerical methods or by using approximate
equations.

As tc,1/2b, noise-induced transitions different from
those considered can be observed on the phase diagram in
the J−tc plane. These transitions are reflected in changes in
the shape of the probability distribution(16): if J,J3stcd,
then the probability densityPsx,rd exhibits a bell-shaped
form; for J.J3stcd the two-value structure of noise is still
immediately reflected in the form ofPsx,rd, i.e., Psx,rd ex-
hibits a U-shaped form. The critical curveJ3stcd is deter-
mined by

J3stcd = S1 −
1

b
DS1 −

a0

a
D−1

s1 − 2btcds2btcds1/bd−1.

s24d

The curveJ3stcd in Fig. 4 demonstrates that, in the model
considered, the phenomenon of noise-induced bistability
does not depend on the shape of the stationary probability
distribution Psx,rd, as in the coexistence region of the two
phasesPsx,rd can exhibit either bell-shaped or U-shaped
forms. Discontinuous transitions can also occur between sta-
tionary states with probability densities of qualitatively iden-
tical forms.

In Fig. 5 we have plotted the critical correlation timetc
* as

a function of the parametersa0
2 and b. In the case of fixed

values ofb the critical parametertc
* increases monotonically

from zero to infinity if the noise amplitudea0 increases from
a0csbd to 1. In the vicinity of the maximal noise amplitude
a0=1,1.a0

2.1−exps−ld, with a constantl@1; the value
of tc

* can be estimated by the following equation:

FIG. 3. Stationary mean fieldm vs coupling strengthJ at differ-
ent correlation timestc. The system parameterb=2 and the noise
amplitudea0=0.99. In the case oftc=0.5 the system shows hyster-
esis. Solid and dashed lines are stable and unstable solutions of the
self-consistency equation(20), respectively. If the value of the mean
field lies on the upper branch close to the pointF with J=J2, a
slight growth ofJ induces a catastrophic transition of the system to
another stable state with the value of the mean field corresponding
to the point G.

FIG. 4. A plot of the phase diagram in theJ–tc plane ata0
2

=0.980,b=2. The shaded region in the figure corresponds to the
coexistence region of two phases. The critical correlation timetc

*

=0.655. The borders of the coexistence regionJ1stcd andJ2stcd are
computed from Eq.(23). The dotted lineJ3 corresponding to Eq.
(24) separates the domains of the phase space, where the shapes of
the probability densityPsx,rd are qualitatively different.

FIG. 5. The critical correlation timetc
* vs the noise amplitudea0

for some values of the system parameterb. The filled dots on thea0
2

axis correspond to values of the critical noise amplitude
a0csbd :a0c

2 s1.1d=0.2828,a0c
2 s1.5d=0.6208,a0c

2 s2d=0.7148, and
a0c

2 s3d=0.7686. At the pointa0=1 the critical correlation time ap-
proaches infinity.
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tc
*sb,a0d <

1

2
S1 +Î1 −

1

b
D−2

lnS1 + a0

1 − a0
D . s25d

Note that forb=1 the critical correlation time can be exactly
expressed by elementary functions(cf. Ref. [19])

tc
*s1,a0d =

a0

2
lnS1 + a0

1 − a0
D .

At the critical noise amplitude,a0*a0c, we can see thattc
*

approaches zero astc
* ,sa2−ac

2d, where ac
2: =a2ua0=a0c

[see
Eq. (10)]. As the noise amplitudea0.a0c increases, the criti-
cal coupling parameterJ* decreases monotonically from in-
finity to the value

J*s1,bd = S1 −
1

b
Ds1/2dfs1/bd−1gFS1 −

1

b
D1/2

+ 1G−1/b

3expF1 −
1

b
+ S1 −

1

b
D1/2G s26d

at a0=1. In the vicinity of the critical amplitudea0
<a0c,a0.a0c, the parameterJ* decreases asJ* ,sa2

−ac
2ds1/bd−1. It is remarkable that in the case of fixed values of

b there is a lower limit for the coupling parameterJ*s1,bd,
below which,J,J*s1,bd, the system is monostable at all
values of the noise parameters.

Hysteresis can also occur in the case of either noise pa-
rameter,tc or a0, being chosen as the control parameter. For
example, in Fig. 6 hysteresis is exposed for the mean value
of the population densitieskXl if the noise correlation timetc

is considered as the control parameter. It can be seen that a
jump from a state with a bigger number of individuals to that
with a lesser one occurs at smaller correlation times than the
opposite jumps.

The mean-field solutionkXl is also compared with com-
puter simulation of the system(12) with the finite number of
interacting species,N=500, using the numerical methods de-
scribed in Refs.[10,11]. The mean value of the population

densitiesX̄ is computed by

X̄ =
1

TN
E

t0

t0+T

o
j=1

N

Xjstddt. s27d

The averaging timeT was chosen to be sufficiently longer
than the correlation time; for example,T<1 near the coex-
istence region. The time evolution of the average value is
carefully monitored until the stationary state is reached

st0.5d. The squares in Fig. 6 showX̄ obtained by numerical
calculations as we gradually change the correlation timetc
during integration of Eqs.(12), i.e., the solutionXi for the
previous valuetck=tck+1−Dt is taken as the initial condition
for the next pointtck+1 andtck is varied monotonically in two
cases: astc increases and astc decreases. It can be seen that
the numerical data satisfactorily coincide with the analytical
stable solutions forkXl. Notably, the coexistence region ex-
ists also in the case of a finite number of interacting species.
As can be expected, the bistable region shrinks as the num-
ber N of species decreases. As was mentioned before, hys-
teresis appears also at a change of the noise amplitude. In
these cases jumps to lesser numbers of individuals occur at
larger amplitudes than the opposite jumps.

Perhaps the most important new result, in an ecological
context, is the existence of the critical noise amplitude
a0csbd. The value ofa0csbd is the lowest value of the noise
amplitude for the phenomenon of hysteresis to occur, i.e.,
discontinuous transitions are possible ifa0.a0csbd. It should
be pointed out that the threshold amplitudea0csbd depends
only on the exponentb describing the generalized Verhulst
self-regulation(see Fig. 2). This circumstance may, in prin-
ciple, provide vital information to maintain ecosystem stabil-
ity in a technogeneous environment. Yet, this conjecture re-
mains to be verified by further studies. Let us note that in the
case ofb=1 discontinuous transitions from a stable state to
an unstable one, where the mean population size grows with-
out limit (a biologically meaningless situation), occur, how-
ever, at small noise amplitudes(see also Ref.[19]).

Finally, the modified model withb=1 in Ref.[19], exhib-
iting noise-induced hysteresis, is able to display discontinu-
ous transitions similar to those represented in Figs. 3 and 6.
But, in this modification the phenomenon of hysteresis is
realized by the inclusion of an artificial competing interac-
tion in the form of a dependence of the carrying capacityK
on the average number of individuals of all populations.
Note that the present model is qualitatively different, for
such a competing interaction is absent but the mean popula-
tion density nevertheless exhibits hysteresis as a function of
noise parameters and the symbiotic coupling strength for all
values ofb.1.

V. CONCLUDING REMARKS

In the present work, we extended our previousN-species
Lotka-Volterra stochastic model of a symbiotic ecological
system with a simple logistic self-regulation mechanism[19]
to a version with the generalized Verhulst self-regulation[see
Eq. (2), with b.1]. We would like to emphasize that our
previous model[19], where an interaction-strength-induced
transition from stability to instability takes place, even if the

FIG. 6. Plot of the mean value of the population densitykXl as
a function of the noise correlation timetc at a0

2=0.939,b=2, and
J=6. The solid and dashed lines correspond to the stable and un-
stable solutions of Eq.(20), respectively. Hysteresis of the mean
valuekXl appears. The squares are obtained by means of computer
simulations of the system(12) with N=500.
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system is deterministic(i.e., in the absence of noise), is
qualitatively different from the present model. In the latter
the corresponding deterministic system is always
monostable, i.e., there are no transitions from stability to
instability.

The presence of colored fluctuations of the carrying ca-
pacities of populations has a profound effect on an ecosys-
tem described by Eqs.(9)–(12) with b.1, rearranging its
parameter space so that in a certain region colored noise can
induce bistability of the ecosystem. Moreover, hysteresis for
the mean field and related discontinuous transitions can
sometimes be found as functions of noise parameters as well
as of the coupling constant. As the coupling-induced two-
phase coexistence region does not exist in the system without
noise, it is a colored-noise effect. The results indicate that the
effect of noise is not merely restricted to the shift of the
mean population density, but the whole nature of the dynam-
ics changes. Notably, the coexistence region exists only at
bounded values of the noise correlation timetc,tc

* [see Eq.
(25) and Fig. 4]. Let us note that there are lower limits for
the coupling parameter,J.J*s1,bd [see Eq.(26)], and for
the noise amplitude,a0.a0c [see Eq.(22)], at lower values
of which the hysteresis of the mean field disappears. This
interesting circumstance demonstrates that both agents — the
symbiotic coupling of species and the colored fluctuations of
the carrying capacities — act in unison to generate discon-
tinuous transitions of the mean population density.

The following characteristic regions can be discerned for
the exponentb in the formula(2), describing the generalized
Verhulst self-regulation.(i) For bø1 and as the coupling
strengthJ exceeds some critical value, dichotomous noise-
induced discontinuous transitions from a stable stationary
phase of the system to an unstable phase can appear. In the
unstable phase an explosive increase of populations occurs.
Of course, the growth of any expanding population must
eventually be limited by shortage of resources. Thus, in eco-
logical contexts unstable states of a system can be interpreted
variously: extinction of populations, presence of additional
interaction between species that the model has not taken into
account, etc.(for b=1 see also Ref.[19]). (ii ) In caseb.1
there is no unstable state of the system, and the deterministic
counterpart of the system is monostable. However, environ-
mental fluctuations can induce bistability of the ecosystem,
and the system presents abrupt(first-order-like) transitions
between the low and high density phases of populations. The
phenomenon is robust enough to survive a modification of
the noise as well as the coupling mechanism. Calculations
analogous to those given in Secs. III and IV show that in the
case of a trichotomous noise[19,22] most of the results of
Sec. IV are qualitatively valid. It is remarkable that for a
trichotomous noiseZ, the flatness parameterw : =kZ4l / kZ2l2,
contrary to the case of the symmetric dichotomous noise

sw=1d, can be anything from 1 tò . Notably, variations of
the trichotomous noise flatness can also induce discontinuous
transitions. We can also modify the model withb.1 by
including a term that mimics a competing interaction de-
scribed in Ref.[19]. Though the concrete formulas are dif-
ferent, the general picture of the colored-noise-induced hys-
teresis is the same as that encountered in Sec. IV.

Our major result is that, for symbiotic ecological systems
(or metapopulations) with the generalized Verhulst self-
regulation sb.1d, colored fluctuations of the environment
can cause bistability and also abrupt transitions of mean
population densities. Therefore, an increase of noise ampli-
tude or a decrease of noise correlation time can, under cer-
tain conditions, cause a catastrophic fall in the size of the
populations. Moreover, as in Eq.(11) the growth rated and
the deterministic carrying capacityK of species have been
absorbed into the time scale and into the coupling strengthJ̃;
thus, in the original(unscaled) setup, discontinous transitions
can occur also by a gradual change of the parametersd ,K,
andJ.

We emphasize that forb.1 abrupt changes of mean
population densities appear only if the noise amplitude is
greater than the threshold valuea0csbd. As the critical noise
amplitudea0c increases relatively rapidly ifb increases(see
Fig. 2), it seems reasonable to assume that in symbiotic eco-
systems with the generalized Verhulst self-regulation abrupt
transitions appear with a greater probability if the exponentb
is lower. It remains to be seen whether such a trend has a
meaning for problems in natural sciences.

The mean-field results considered correspond to an infi-
nite number of globally coupled species. Bearing in mind the
results of computer simulations presented in Fig. 6, one can
assume that this scenario is not much different from more
realistic ecosystems, where the number of species is finite, at
least in the case when the number of species is great enough.

It is worth emphasizing that the deterministic counterpart
of most ecological models exhibiting noise-induced discon-
tinuous transitions is able to display transitions similar to
those induced by noise for a certain range of the values of the
parameters[14,16,17]. In our model, however, these transi-
tions occur only when colored noise is present.

We believe that the obtained results are of interest also in
other fields where symbiotic interaction and generalized Ver-
hulst self-regulation are relevant by modeling the system,
e.g., in the dynamics of human world population[23],
coupled chemical reactions, some laser systems[9], and
business[24].
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